Enhancement of Digestion Resistance and Glycemic Control of Corn Starch through Conjugation with Gallic Acid and Quercetin Using the Free Radical Grafting Method

Author:

Wu Tsung-YenORCID,Sun Nan-Nong,Chan Zu,Chen Chao-Jung,Wu Yi-Ching,Chau Chi-FaiORCID

Abstract

The objective of this study was to synthesize different polyphenol–corn starch complexes including gallic acid–starch and quercetin–starch by conjugating corn starch with gallic acid and quercetin using the free radical grafting method. This process was effective in enhancing conjugations of starch molecules with gallic acid and quercetin (5.20 and 5.83 mg GAE/g, respectively) and imparted promising antioxidant capacity to the phenolic–starch complexes. Significant interactions between these phenolic compounds and corn starch molecules were revealed with an ultraperformance liquid chromatography electrospray ionization Q-time-of-flight mass spectrometry assay. It was revealed that significantly higher levels of resistant starch in the above gallic–starch and quercetin–starch complex samples (11.6 and 15.3 g/100 g, respectively) together with an obvious reduction in glycemic response (7.9% and 11.8%, respectively) observed over the control. Complex samples functionalized with gallic acid and quercetin have exerted modified physicochemical properties, particularly reduction in swelling ability (58.7–60.1%), breakdown viscosity (62.5–67.8%), and setback viscosity (37.7–44.5%). In sum, free radical grafting treatment could be a promising method for imparting corn starch with enhanced resistance to enzyme digestion along with changes in pasting properties for specific food applications.

Funder

National Science and Technology Council of the Republic of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3