Embodied Energy and Environmental Impact of Large-Power Stand-Alone Photovoltaic Irrigation Systems

Author:

Todde Giuseppe,Murgia Lelia,Carrelo Isaac,Hogan Rita,Pazzona Antonio,Ledda Luigi,Narvarte Luis

Abstract

A life cycle assessment (LCA) methodology was used to evaluate the cumulative energy demand and the related environmental impact of three large-power stand-alone photovoltaic (PV) irrigation systems ranging from 40 kWp to 360 kWp. The novelty of this analysis is the large power of these systems as the literature up to now is restricted to modeled PV pumping systems scenarios or small power plants, where the size can be a critical factor for energy and environmental issues. The analysis shows that the yearly embodied energy per unit of PV power ranged from 1306 MJ/kWp to 1199 MJ/kWp depending of the PV generator size. Similarly, the related yearly carbon dioxide impacts ranged from 72.6 to 79.8 kg CO2e/kWp. The production of PV modules accounted for the main portion (about 80%) of the primary energy embodied into the PV irrigation system (PVIS). The outcomes of the study also show an inverse trend of the energy and carbon payback times respect to the PV power size: In fact, energy payback time increased from 1.94, to 5.25 years and carbon payback time ranged from 4.62 to 9.38 years. Also the energy return on investment depends on the PV generator dimension, ranging from 12.9 to 4.8. The environmental impact of the stand-alone PV systems was also expressed in reference to the potential amount of electricity generated during the whole PV life. As expected, the largest PVIS performs the best result, obtaining an emission rate of 45.9 g CO2e per kWh, while the smallest one achieves 124.1 g CO2e per kWh. Finally, the energy and environmental indicators obtained in this study are strongly related to the irrigation needs, which in turn are influenced by other factors as the type of cultivated crops, the weather conditions and the water availability.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3