Life Cycle Assessment and Cumulative Energy Demand Analyses of a Photovoltaic/Thermal System with MWCNT/Water and GNP/Water Nanofluids

Author:

Dolgun Gülşah Karaca1,Koşan Meltem2ORCID,Kayfeci Muhammet3ORCID,Georgiev Aleksandar G.4,Keçebaş Ali1ORCID

Affiliation:

1. Department of Energy Systems Engineering, Technology Faculty, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey

2. Department of Energy Systems Engineering, Elbistan Engineering Faculty, Kahramanmaras Istiklal University, 46100 Kahramanmaras, Turkey

3. Department of Energy Systems Engineering, Technology Faculty, Karabük University, 78100 Karabük, Turkey

4. Department of General engineering, University of Telecommunications and Posts, 1 Akad. Stefan Mladenov str., 1700 Sofia, Bulgaria

Abstract

The global climate crisis has led society toward cleaner energy sources. Another reason is the limited reserves of fossil energy resources. Efforts to increase the efficiency of photovoltaic modules (PVs) have gained momentum. The high temperature is the biggest factor causing a decrease in the efficiency of PVs. In this study, a commercial PV was cooled with distilled water, a multiwalled carbon nanotubes (MWCNT)/water mixture, and a graphene nanoplatelets (GNP)/water mixture. The environmental impact of electricity, total energetic efficiency, energy payback time, energy return on investment, and embodied energy of the PV/thermal (PV/T) system were compared using life cycle assessment and cumulative energy demand. The electrical efficiency of the PV/T changed between 13.5% and 14.4%. The total efficiency of PV/T changed between 39.5% and 45.7%. The energy returns on investment were 1.76, 1.80, and 1.85 for PV/T-distilled water, the PV/T-MWCNT/water mixture, and the PV/T-GNP/water mixture, respectively. Moreover, the embodied energy evaluation values were 3975.88 MJ for PV/T-distilled water, 4081.06 MJ for the PV/T-MWCNT/water mixture, and 4077.86 MJ for the PV/T-GNP/water mixture. The main objective of this research was to study the energy and environmental performances of PVs cooled with different nanofluids and draw general conclusions about the applicability of these systems.

Funder

Karabük University Scientific Research Projects Coordination Unit

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3