Technical and environmental aspects of solar photo-voltaic water pumping systems: a comprehensive survey

Author:

Gunasekaran V.1,Chakraborty Suprava2

Affiliation:

1. a School of Electrical Engineering, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India

2. b Technology Information Forecasting and Assessment Council, Vellore Institute of Technology, Vellore, Tamilnadu 632014, India

Abstract

Abstract Several sectors including agriculture and farming rely on renewable source-based water pumping due to recurrent hikes in fossil fuel prices and contaminant environment. In recent decades, a solar photovoltaic-based water pumping system (SPVWPS) has been a more popularly chosen technique for its feasibility and economic solution to the end-users. The initial cost, efficiency, orientation, auxiliary storage, head, and payback period are the technical issues, whereas transportation, lack of skilled people, theft, vandalism community, and politics are the social challenges that may prevent the solar pumps from being widely adopted. However, more subsidies, training, tax breaks, and remote monitoring can make this technology more accessible. Also, this article emphasizes various parameters affecting system performance, such as the suitable selection of panels, power conditioning units, motors, pumps, the payback period of the energy, and cost. Moreover, this article covers the technical and environmental facets of the SPVWPS, which helps researchers, policymakers, manufacturers, and end-users to design and choose a suitable pumping system. Major findings are stand-alone SPVWPS is highly recommended in areas with a maximum of 50 m dynamic head and a minimum of 2,000 m from local grid power. Moreover, along with the 25-year life span of the 25-kW SPVWPS could generate 150 MWh/year and reduce about 86,500 kg of CO2 emissions.

Publisher

IWA Publishing

Subject

Water Science and Technology

Reference125 articles.

1. PV water pumping systems based on standard frequency converters;Progress in Photovoltaics: Research and Applications,2003

2. An enhanced EPP-MPPT algorithm with modified control technique in solar-based inverter applications: analysis and experimentation;IEEE Access,2021

3. Design and economic evaluation of electrification of small villages in rural areas in Yemen using stand alone photovoltaic system;International Journal of Renewable Energy Research,2013

4. Decentralized energy systems for clean electricity access;Nature Climate Change,2015

5. Exergy, environmental, and performance evaluations of a solar water;Sustainable Energy Technologies and Assessments,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3