Experimental Study on the Performance of Controllers for the Hydrogen Gas Production Demanded by an Internal Combustion Engine

Author:

Cervantes-Bobadilla Marisol,Escobar-Jiménez Ricardo,Gómez-Aguilar José,García-Morales Jarniel,Olivares-Peregrino Víctor

Abstract

This work presents the design and application of two control techniques—a model predictive control (MPC) and a proportional integral derivative control (PID), both in combination with a multilayer perceptron neural network—to produce hydrogen gas on-demand, in order to use it as an additive in a spark ignition internal combustion engine. For the design of the controllers, a control-oriented model, identified with the Hammerstein technique, was used. For the implementation of both controllers, only 1% of the overall air entering through the throttle valve reacted with hydrogen gas, allowing maintenance of the hydrogen–air stoichiometric ratio at 34.3 and the air–gasoline ratio at 14.6. Experimental results showed that the average settling time of the MPC controller was 1 s faster than the settling time of the PID controller. Additionally, MPC presented better reference tracking, error rates and standard deviation of 1.03 × 10 − 7 and 1.06 × 10 − 14 , and had a greater insensitivity to measurement noise, resulting in greater robustness to disturbances. Finally, with the use of hydrogen as an additive to gasoline, there was an improvement in thermal and combustion efficiency of 4% and 0.6%, respectively, and an increase in power of 545 W, translating into a reduction of fossil fuel use.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3