Abstract
Water yield is an important ecosystem service, which is directly related to human welfare and affects the sustainable development. Using the integrated valuation of environmental services and tradeoffs model (InVEST model), we simulated the dynamic change of water yield in Qinghai lake watershed, Qinghai, China, and verified the simulation results. This paper emphatically explored how precipitation change and land use/land cover change (LUCC) affected the change of water yield on the spatial and temporal scales. Before 2004, the areas of cultivated land and unused land showed a dramatic increasing tendency, while forestland and water area presented a decreasing trend. After 2004 cultivated land changed slowly, unused land decreased. Grassland revealed a general trend of decline during 1977–2018, while built-up land basically presented a linear increase. The results show that water yield fluctuated and increased during 1977–2018. From 1977 to 2000, the mean water yield in each sub-watershed showed an increasing trend and afterward a decreasing one. After 2000, the sub-watersheds basically showed an increasing tendency. There was a strong correlation, with a correlation coefficient of 0.954 ** (** correlation is significant at the 0.01 level), between precipitation and water yield. Land use/land cover change can change the hydrological state of infiltration, evapotranspiration, and water retention. Meanwhile, the correlation between built-up land and water yield was the highest, with a correlation coefficient of 0.932, followed by forestland, with a correlation coefficient of 0.897. Through the analysis of different scenarios, we found that compared with land use/land cover change, precipitation played a more dominant role in affecting water yield.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献