A Novel Framework for Integrally Evaluating the Impacts of Climate Change and Human Activities on Water Yield Services from Both Local and Global Perspectives

Author:

Ouyang Kehao12,Huang Min123ORCID,Gong Daohong12,Zhu Daoye4ORCID,Lin Hui12,Xiao Changjiang5ORCID,Fan Yewen3,Altan Orhan6ORCID

Affiliation:

1. School of Geography and Environment/Key Laboratory of Poyang Lake Wetland and Watershed Research (Ministry of Education), Jiangxi Normal University, Nanchang 330022, China

2. Key Laboratory of Natural Disaster Monitoring, Early Warning and Assessment of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China

3. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

4. Department of Geography, Geomatics and Environment, University of Toronto, Mississauga, ON L5L 1C6, Canada

5. College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China

6. Department of Geomatics, Istanbul Technical University, Istanbul 36626, Turkey

Abstract

With global climate change and irrational human activities, regional water resource conflicts are becoming more and more pronounced. The availability of water resource in watersheds can be indicated by the water yield. Exploring the factors that influence the water yield is crucial in responding to climate change and protecting water resource. Previous research on the factors influencing the water yield has frequently adopted a macro-level perspective, which has failed to reflect the influencing mechanisms of changes at the local scale adequately. Therefore, this study proposes a novel framework for integrally evaluating the impacts of climate change and human activities on water yield services from both local and global perspectives. Taking Ganzhou City, the source of the Ganjiang River, as an example, the results show the following: (1) Ganzhou City had the largest water yield of 1307.29 mm in 2016, and the lowest was only 375.32 mm in 2011. The spatial distribution pattern was mainly affected by the surface environment, and the high-value water yield regions in the study area were predominantly located in urban areas with flat terrain. (2) At the local scale, regions where human activities contribute more than 80% accounted for 25% of the area. In comparison, the impact of climate change accounted for 0.95%. The contribution rate of human activities to the water yield in Ganzhou City was significantly greater than that of climate change. (3) At the global scale, the simulation results of four scenarios show that climate change contributed (>98%) to the water yield, which is significantly higher than human activities (<2%). This study puts forward pioneering views on the research of water yield driving forces and provides a valuable theoretical basis for water resource protection and ecological environment construction.

Funder

National Natural Science Foundation of China

Youth Program of Major Discipline Academic and Technical Leaders Training Program of Jiangxi Talents Supporting Project

Open Research Fund Program of LIESMARS

Opening Fund of Key Laboratory of Poyang Lake Wetland and Watershed Research (Jiangxi Normal University), Ministry of Education

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3