High-Resolution Optical Remote Sensing Image Registration via Reweighted Random Walk based Hyper-Graph Matching

Author:

Wu ,Di ,Ming ,Lv ,Tan

Abstract

High-resolution optical remote sensing image registration is still a challenging task due to non-linearity in the intensity differences and geometric distortion. In this paper, an efficient method utilizing a hyper-graph matching algorithm is proposed, which can simultaneously use the high-order structure information and radiometric information, to obtain thousands of feature point pairs for accurate image registration. The method mainly consists of the following steps: firstly, initial matching by Uniform Robust Scale-Invariant Feature Transform (UR-SIFT) is carried out in the highest pyramid image level to derive the approximate geometric relationship between the images; secondly, two-stage point matching is performed to find the matches, that is, a rotation and scale invariant area-based matching method is used to derive matching candidates for each feature point and an efficient hyper-graph matching algorithm is applied to find the best match for each feature point; thirdly, a local quadratic polynomial constraint framework is used to eliminate match outliers; finally, the above process is iterated until finishing the matching in the original image. Then, the obtained correspondences are used to perform the image registration. The effectiveness of the proposed method is tested with six pairs of high-resolution optical images, covering different landscape types—such as mountain area, urban, suburb, and flat land—and registration accuracy of sub-pixel level is obtained. The experiments show that the proposed method outperforms the conventional matching algorithms such as SURF, AKAZE, ORB, BRISK, and FAST in terms of total number of correct matches and matching precision.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

China Scholarship Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3