A Two-Stage Deep Learning Registration Method for Remote Sensing Images Based on Sub-Image Matching

Author:

Chen YuanORCID,Jiang Jie

Abstract

The registration of multi-temporal remote sensing images with abundant information and complex changes is an important preprocessing step for subsequent applications. This paper presents a novel two-stage deep learning registration method based on sub-image matching. Unlike the conventional registration framework, the proposed network learns the mapping between matched sub-images and the geometric transformation parameters directly. In the first stage, the matching of sub-images (MSI), sub-images cropped from the images are matched through the corresponding heatmaps, which are made of the predicted similarity of each sub-image pairs. The second stage, the estimation of transformation parameters (ETP), a network with weight structure and position embedding estimates the global transformation parameters from the matched pairs. The network can deal with an uncertain number of matched sub-image inputs and reduce the impact of outliers. Furthermore, the sample sharing training strategy and the augmentation based on the bounding rectangle are introduced. We evaluated our method by comparing the conventional and deep learning methods qualitatively and quantitatively on Google Earth, ISPRS, and WHU Building Datasets. The experiments showed that our method obtained the probability of correct keypoints (PCK) of over 99% at α = 0.05 (α: the normalized distance threshold) and achieved a maximum increase of 16.8% at α = 0.01, compared with the latest method. The results demonstrated that our method has good robustness and improved the precision in the registration of optical remote sensing images with great variation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3