Robust Feature Matching with Spatial Smoothness Constraints

Author:

Huang Xu,Wan Xue,Peng Daifeng

Abstract

Feature matching is to detect and match corresponding feature points in stereo pairs, which is one of the key techniques in accurate camera orientations. However, several factors limit the feature matching accuracy, e.g., image textures, viewing angles of stereo cameras, and resolutions of stereo pairs. To improve the feature matching accuracy against these limiting factors, this paper imposes spatial smoothness constraints over the whole feature point sets with the underlying assumption that feature points should have similar matching results with their surrounding high-confidence points and proposes a robust feature matching method with the spatial smoothness constraints (RMSS). The core algorithm constructs a graph structure from the feature point sets and then formulates the feature matching problem as the optimization of a global energy function with first-order, spatial smoothness constraints based on the graph. For computational purposes, the global optimization of the energy function is then broken into sub-optimizations of each feature point, and an approximate solution of the energy function is iteratively derived as the matching results of the whole feature point sets. Experiments on close-range datasets with some above limiting factors show that the proposed method was capable of greatly improving the matching robustness and matching accuracy of some feature descriptors (e.g., scale-invariant feature transform (SIFT) and Speeded Up Robust Features (SURF)). After the optimization of the proposed method, the inlier number of SIFT and SURF was increased by average 131.9% and 113.5%, the inlier percentages between the inlier number and the total matches number of SIFT and SURF were increased by average 259.0% and 307.2%, and the absolute matching accuracy of SIFT and SURF was improved by average 80.6% and 70.2%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3