Large Aerial Image Tie Point Matching in Real and Difficult Survey Areas via Deep Learning Method

Author:

Yuan XiuliuORCID,Yuan Xiuxiao,Chen JunORCID,Wang Xunping

Abstract

Image tie point matching is an essential task in real aerial photogrammetry, especially for model tie points. In current photogrammetry production, SIFT is still the main matching algorithm because of the high robustness for most aerial image tie points matching. However, when there is a certain number of weak texture images in a surveying area (mountain, grassland, woodland, etc.), these models often lack tie points, resulting in the failure of building an airline network. Some studies have shown that the image matching method based on deep learning is better than the SIFT method and other traditional methods to some extent (even for weak texture images). Unfortunately, these methods are often only used in small images, and they cannot be directly applied to large image tie point matching in real photogrammetry. Considering the actual photogrammetry needs and motivated by the Block-SIFT and SuperGlue, this paper proposes a SuperGlue-based LR-Superglue matching method for large aerial image tie points matching, which makes learned image matching possible in photogrammetry application and promotes the photogrammetry towards artificial intelligence. Experiments on real and difficult aerial surveying areas show that LR-Superglue obtains more model tie points in forward direction (on average, there are 60 more model points in each model) and more image tie points between airline(on average, there are 36 more model points in each adjacent images). Most importantly, the LR-Superglue method requires a certain number of points between each adjacent model, while the Block-SIFT method made a few models have no tie points. At the same time, the relative orientation accuracy of the image tie points matched by the proposed method is significantly better than block-SIFT, which reduced from 3.64 μm to 2.85 μm on average in each model (the camera pixel is 4.6 μm).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference53 articles.

1. Autocorrelation Techniques for Soft Photogrammetry;Yao;Ph.D. Thesis,1997

2. DIGITAL IMAGE CORRELATION: PERFORMANCE AND POTENTIAL APPLICATION IN PHOTOGRAMMETRY

3. Rover Visual Obstacle Avoidance;Moravec;Proceedings of the 7th International Joint Conference on Artificial Intelligence, IJCAI ’81,1981

4. A fast operator for detection and precise location of distinct points, corners and centres of circular features;Förstner;Proceedings of the ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data,1987

5. A combined corner and edge detector;Harris;Proceedings of the Alvey Vision Conference,1988

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3