Energy Consumption and Internal Distribution in Activated Sludge Wastewater Treatment Plants of Greece

Author:

Siatou Alexandra,Manali Anthoula,Gikas Petros

Abstract

The high-energy consumption of wastewater treatment plants (WWTPs) is a crucial issue for municipalities worldwide. Most WWTPs in Greece operate as extended aeration plants, which results in high operational costs due to high energy needs. The present study investigated the energy requirements of 17 activated sludge WWTPs in Greece, serving between 1100–56,000 inhabitants (population equivalent, PE), with average daily incoming flowrates between 300–27,300 m3/d. The daily wastewater production per inhabitant was found to lie between 0.052 m3/PE·d and 0.426 m3/PE·d, with average volume of 0.217 ± 0.114 m3/PE·d. The electric energy consumption per volume unit (EQ (kWh/m3)) was between 0.128–2.280 kWh/m3 (average 0.903 ± 0.509 kWh/m3) following a near logarithmic descending correlation with the average incoming flowrate (Qav) (EQ = −0.294lnQav + 3.1891; R2 = 0.5337). A similar relationship was found between the daily electric energy requirements for wastewater treatment per inhabitant (EPE (kWh/PE·d)) as a function of PE, which varied from 0.041–0.407 kWh/PE·d (average 0.167 ± 0.101 kWh/PE·d)) (EPE = −0.073ln(PE) + 0.8425; R2 = 0.6989). Similarly, the daily energy cost per inhabitant (E€/PE (€/PE·d)) as a function of PE and the electric energy cost per wastewater volume unit (E€/V (€/m3)) as a function of average daily flow (Qav) were found to follow near logarithmic trends (E€/PE = −0.013ln(PE) + 0.1473; R2 = 0.6388, and E€/V = −0.052lnQav + 0.5151; R2 = 0.6359), respectively), with E€/PE varying between 0.005–0.073 €/PE·d (average 0.024 ± 0.019 €/PE·d) and E€/V between 0.012–0.291 €/m3 (average 0.111 ± 0.077 €/m3). Finally, it was calculated that, in an average WWTP, the aeration process is the main energy sink, consuming about 67.2% of the total electric energy supply to the plant. The large variation of energy requirements per inlet volume unit and per inhabitant served, indicate that there is large ground for improving the performance of the WWTPs, with respect to energy consumption.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3