QuadNet: A Hybrid Framework for Quadrotor Dead Reckoning

Author:

Shurin ArturORCID,Klein ItzikORCID

Abstract

Quadrotor usage is continuously increasing for both civilian and military applications such as surveillance, mapping, and deliveries. Commonly, quadrotors use an inertial navigation system combined with a global navigation satellite systems receiver for outdoor applications and a camera for indoor/outdoor applications. For various reasons, such as lighting conditions or satellite signal blocking, the quadrotor’s navigation solution depends only on the inertial navigation system solution. As a consequence, the navigation solution drifts in time due to errors and noises in the inertial sensor measurements. To handle such situations and bind the solution drift, the quadrotor dead reckoning (QDR) approach utilizes pedestrian dead reckoning principles. To that end, instead of flying the quadrotor in a straight line trajectory, it is flown in a periodic motion, in the vertical plane, to enable peak-to-peak (two local maximum points within the cycle) distance estimation. Although QDR manages to improve the pure inertial navigation solution, it has several shortcomings as it requires calibration before usage, provides only peak-to-peak distance, and does not provide the altitude of the quadrotor. To circumvent these issues, we propose QuadNet, a hybrid framework for quadrotor dead reckoning to estimate the quadrotor’s three-dimensional position vector at any user-defined time rate. As a hybrid approach, QuadNet uses both neural networks and model-based equations during its operation. QuadNet requires only the inertial sensor readings to provide the position vector. Experimental results with DJI’s Matrice 300 quadrotor are provided to show the benefits of using the proposed approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quadrotor with wheels: design and experimental evaluation;Scientific Reports;2024-07-06

2. Three-Dimensional Dead-Reckoning Based on Lie Theory for Overcoming Approximation Errors;Applied Sciences;2024-06-20

3. Quadrotor Dead Reckoning with Multiple Inertial Sensors;2023 DGON Inertial Sensors and Systems (ISS);2023-10-24

4. Unmanned Aerial Systems for Indoor Inspection in Industrial Sites: System Architecture, Sensors, and Simulation Techniques;2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE);2023-10-09

5. Compensating Delays for Precise and Real-time ROS Cloud Robotics Localization;2023 IEEE 32nd International Symposium on Industrial Electronics (ISIE);2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3