Research into Preparation and Performance of Fast-Hardening RPC Mixed with Straw

Author:

Gong Kaiwei1,Liang Zhao1,Peng Xi23ORCID,Wang Hui1

Affiliation:

1. School of Civil Engineering and Geographical Environment, Ningbo University, Ningbo 315000, China

2. School of Civil Transportation Engineering, Ningbo University of Technology, Ningbo 315211, China

3. Engineering Research Center of Industrial Construction in Civil Engineering of Zhejiang, Ningbo University of Technology, Ningbo 315048, China

Abstract

Based on its characteristics of early strength, good toughness, and excellent mechanical and impact resistance, steel fiber-reinforced fast-hardening reactive powder concrete (RPC) is expected to become an alternative material used in the rapid repair of marine concrete structures. However, the steel fibers have also caused corrosion problems in coastal environments. To make doped fiber fast-hardening RPC more adaptable for use in ocean engineering, this study prepares fast-hardening RPC mixed with straw and studied the effects of straw content and curing age on its slump flow, setting time, and mechanical performance (flexural strength, compressive strength, and flexural toughness). The effects of straw addition on the compactness and hydration products of fast-hardening RPC were studied through macro- (ultrasonic analysis) and micro-scopic analysis (electron microscopy scanning and X-ray diffraction patterns). The straw content mentioned in this paper refers to the percentage of straw in relation to RPC volume. The results showed that straw reduced the fluidity of RPC slurry by 10.5–11.5% compared to concrete without straw, and it accelerated the initial setting of RPC slurry. When the straw content accounted for 1% of RPC volume, the setting rate was the fastest, with a increasing rate being 6–18%. Compared to concrete without straw, the flexural and compressive strength of fast-hardening RPC was enhanced by 3.7–30.5%. When the content was either 3% or 4%, the mechanical properties improved. Moreover, when the straw content accounted for 4% of RPC volume, the flexural toughness was the highest, with the increase rate being 21.4% compared to concrete without straw. Straw reduces the compactness of fast-hardening RPC.

Funder

Natural Science Foundation of Zhejiang Province, China

Ningbo Natural Science Foundation Project

National Natural Science Foundation of China

Major Special Science and Technology Project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3