Experimental Investigation on the Dynamic Mechanical Properties and Microstructure Deterioration of Steel Fiber Reinforced Concrete Subjected to Freeze–Thaw Cycles

Author:

Li Yang,Zhang Qirui,Wang Ruijun,Xiong Xiaobin,Li Yan,Wang Jiayu

Abstract

In this study, the dynamic mechanical properties of steel fiber reinforced concrete under the influence of freeze–thaw cycles were studied. The studied parameters include steel fiber content (0%, 1% and 2%), confining pressures (0, 5 and 10 MPa) and strain rates (10−5/s, 10−4/s, 10−3/s and 10−2/s). Performance was also evaluated, including triaxial compressive strength, peak strain, the relationship between stress and strain, failure mode and microstructure. The results show that with the increase in F–T cycles, the compressive strength and energy absorption capacity of concrete gradually decrease. The mechanical properties of concrete increased with the addition of steel fibers during F–T cycles, and the optimum amount of steel fiber to enhance resistance to F–T cycles is 1% within the evaluation range. In this study, the effects of strain rate and confining pressure on the strength and failure mode of concrete after fiber addition are studied. Both the dynamic increase factor and the concrete strength increase linearly with the increase of strain rate, the dynamic increase factor is characterized by an increase in intensity caused by strain rate. When there is no confining, the crack direction of the concrete specimen is parallel to the stress loading direction, and when there is confining, it is manifested as oblique shear failure. The results of scanning electron microscopy analysis of the microstructure demonstrate the performance results at the macroscopic level (compressive strength and peak strain).

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi

Young Talent Fund of Association for Science and Technology in Shaanxi, China

Young Talent fund of Association for Science and Technology in Xi’an City

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3