Effect of Chloride Salt Erosion on the Properties of Straw Fiber Reactive Powder Concrete

Author:

Wang Hangyang12,Gong Kaiwei12,Cheng Bingling3,Peng Xi24ORCID,Wang Hui1,Xu Bin4

Affiliation:

1. School of Civil Engineering and Geographical Environment, Ningbo University, Ningbo 315000, China

2. School of Civil Transportation Engineering, Ningbo University of Technology, Ningbo 315211, China

3. Ningbo Yonghuan Yuan Environmental Protection Engineering Technology Co., Ltd., Ningbo 315000, China

4. Ningbo Roaby Technology Industrial Group Co., Ltd., Ningbo 315800, China

Abstract

Straw fibers are renowned for their cost-effectiveness, sustainability, and durability. They represent a promising natural reinforcement option for reactive powder concrete (RPC). This paper investigated the impact of straw fibers on RPC’s workability, mechanical performance (mechanical strength and flexural toughness), and electrical properties (electrical resistance and AC impedance spectroscopy curves). The straw fiber volumes ranged from 1% to 4.0% of the total RPC volume. Specimens were cured under standard curing conditions for 3, 7, 14, and 28 days. Mechanical and electrical properties of the specimens were tested before chloride salt erosion. The mass loss and ultrasonic velocity loss of the samples were measured under NaCl freeze–thaw cycles (F-Cs). The mass loss, ultrasonic velocity loss, and mechanical strengths loss of the samples were measured under NaCl dry–wet alternations (D-As). The findings indicated that incorporating straw fibers enhanced RPC’s flexural strength, compressive strength, and flexural toughness by 21.3% to 45.76%, −7.16% to 11.62%, and 2.4% to 32.7%, respectively, following a 28-day curing period. The addition of straw fibers could augment the AC electrical resistance of the RPC by 10.17% to 58.1%. The electrical characteristics of the RPC adhered to series conduction models. A power function relationship existed between the electrical resistance and mechanical strengths of the RPC. After 10 NaCl D-As, the mass loss rate, ultrasonic velocity loss rate, flexural strength, and compressive strength loss rates of the RPC decreased by 0.42% to 1.68%, 2.69% to 6.73%, 9.6% to 35.65%, and 5.41% to 34.88%, respectively, compared to blank samples. After undergoing 200 NaCl F-Cs, the rates of mass loss and ultrasonic velocity loss of the RPC decreased by 0.89% to 1.01% and 6.68% to 8.9%, respectively.

Funder

Zhejiang Provincial Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3