A Framework for Planning and Execution of Drone Swarm Missions in a Hostile Environment

Author:

Siemiatkowska BarbaraORCID,Stecz WojciechORCID

Abstract

This article presents a framework for planning a drone swarm mission in a hostile environment. Elements of the planning framework are discussed in detail, including methods of planning routes for drone swarms using mixed integer linear programming (MILP) and methods of detecting potentially dangerous objects using EO/IR camera images and synthetic aperture radar (SAR). Methods of detecting objects in the field are used in the mission planning process to re-plan the swarm’s flight paths. The route planning model is discussed using the example of drone formations managed by one UAV that communicates through another UAV with the ground control station (GCS). This article presents practical examples of using algorithms for detecting dangerous objects for re-planning of swarm routes. A novelty in the work is the development of these algorithms in such a way that they can be implemented on mobile computers used by UAVs and integrated with MILP tasks. The methods of detection and classification of objects in real time by UAVs equipped with SAR and EO/IR are presented. Different sensors require different methods to detect objects. In the case of infrared or optoelectronic sensors, a convolutional neural network is used. For SAR images, a rule-based system is applied. The experimental results confirm that the stream of images can be analyzed in real-time.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3