U-SMART: unified swarm management and resource tracking framework for unoccupied aerial vehicles

Author:

Phadke Abhishek12ORCID,Medrano F. Antonio12,Starek Michael12

Affiliation:

1. Conrad Blucher Institute for Surveying and Science, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA

2. Department of Computer Science, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA

Abstract

Unoccupied aerial vehicle (UAV) swarms have the ability to exhibit improved capabilities and performance when compared to individual UAVs. However, their target operation environment is fraught with disruptions, including communication limitations, sensor failures, and dynamic environmental conditions, which can significantly impact swarm performance and robustness. To address these challenges, the proposed unified swarm management and resource tracking (U-SMART) framework focuses on enabling resiliency within UAV swarms. Resiliency refers to the swarm's ability to adapt, recover, and maintain functionality in the face of disruptions. The framework integrates features such as agent well-being tracking, collision and obstacle avoidance, energy management, and task control to enhance the swarm's ability to withstand disruptions and continue operating effectively to provide a comprehensive solution for unified swarm management. The modular design allows flexible configuration, upgrades, and the addition of new components. This facilitates easy adaptation to specific swarm requirements and evolving operational needs. Using frameworks like U-SMART, swarm operators can efficiently manage and control UAV swarms, mitigate disruptions, and maintain high situational awareness in challenging environments. Performance is validated for the integrated modules to test feasibility for different experiment scenarios. For each module and feasibility test, thresholds were set to indicate acceptable performance in the presence of disruptions, and results for the swarm running on the proposed framework showed the acceptable performance of agents validated using explicitly designed metrics.

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3