Examining application-specific resiliency implementations in UAV swarm scenarios

Author:

Phadke Abhishek,Medrano F. Antonio

Abstract

The number of real-world scenarios where the use of an unmanned aerial vehicle (UAV) swarm is beneficial has greatly increased in recent years. From precision agriculture to forest fire monitoring, post-disaster search and rescue applications, to military use, the applications are widespread. While it is a perceived requirement that all UAV swarms be inherently resilient, in reality, it is often not so. The incorporation of resilient mechanisms depends on an application usage scenario. This study examines a comprehensive range of application scenarios for UAV swarms to bring forward the multitude of components that work together to provide a measure of resilience to the overall swarm. A three-category scheme is used to classify swarm applications. While systemic resilience is an interconnected concept, most real-world applications of UAV swarm research focus on making certain components resilient to disturbances. A broad categorization of UAV swarm applications, categorized by recognized components and modules, is presented, and prevalent approaches for novel resilience mechanisms in each category are discussed.

Publisher

OAE Publishing Inc.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3