Underwater Acoustic Target Recognition Based on Deep Residual Attention Convolutional Neural Network

Author:

Ji Fang1,Ni Junshuai1,Li Guonan1,Liu Liming1,Wang Yuyang12

Affiliation:

1. China Ship Research and Development Academy, Beijing 100192, China

2. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150009, China

Abstract

Underwater acoustic target recognition methods based on time-frequency analysis have shortcomings, such as missing information on target characteristics and having a large computation volume, which leads to difficulties in improving the accuracy and immediacy of the target recognition system. In this paper, an underwater acoustic target recognition model based on a deep residual attention convolutional neural network called DRACNN is proposed, whose input is the time-domain signal of the underwater acoustic targets radiated noise. In this model, convolutional blocks with attention to the mechanisms are used to focus on and extract deep features of the target, and residual networks are used to improve the stability of the network training. On the full ShipsEar dataset, the recognition accuracy of the DRACNN model is 97.1%, which is 2.2% higher than the resnet-18 model with an approximately equal number of parameters as this model. With similar recognition accuracies, the DRACNN model parameters are 1/36th and 1/10th of the AResNet model and UTAR-Transformer model, respectively, and the floating-point operations are 1/292nd and 1/46th of the two models, respectively. Finally, the DRACNN model pre-trained on the ShipsEar dataset was migrated to the DeepShip dataset and achieved recognition accuracy of 89.2%. The experimental results illustrate that the DRACNN model has excellent generalization ability and is suitable for a micro-UATR system.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3