Research on a Feature Enhancement Extraction Method for Underwater Targets Based on Deep Autoencoder Networks

Author:

Ji Fang1,Li Guonan1,Lu Shaoqing1ORCID,Ni Junshuai1

Affiliation:

1. China Ship Research and Development Academy, Beijing 100192, China

Abstract

The low-frequency line spectrum of the radiated noise signals of hydroacoustic targets contains features describing the intrinsic properties of the target that make the target susceptible to exposure. In order to extract the line spectral features of underwater acoustic targets, a method combining image processing and a deep autoencoder network (DAE) is proposed in this paper to enhance the low-frequency weak line spectrum of underwater targets in an extremely low signal-to-noise ratio environment based on the measured data of large underwater vehicles. A Gauss–Bernoulli restricted Boltzmann machine (G–BRBM) for real-value signal processing was designed and programmed by introducing a greedy algorithm. On this basis, the encoding and decoding mechanism of the DAE network was used to eliminate interference from environmental noise. The weak line spectrum features were effectively enhanced and extracted under an extremely low signal-to-noise ratio of 10–300 Hz, after which the reconstruction results of the line spectrum features were obtained. Data from large underwater vehicles detected by far-field sonar arrays were processed and the results show that the method proposed in this paper was able to adaptively enhance the line spectrum in a data-driven manner. The DAE method was able to achieve more than double the extractable line spectral density in the frequency band of 10–300 Hz. Compared with the traditional feature enhancement extraction method, the DAE method has certain advantages for the extraction of weak line spectra.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3