Cross-Domain Contrastive Learning-Based Few-Shot Underwater Acoustic Target Recognition

Author:

Cui Xiaodong1,He Zhuofan1,Xue Yangtao2,Tang Keke3ORCID,Zhu Peican4ORCID,Han Jing1

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

2. School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China

3. Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China

4. School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Underwater Acoustic Target Recognition (UATR) plays a crucial role in underwater detection devices. However, due to the difficulty and high cost of collecting data in the underwater environment, UATR still faces the problem of small datasets. Few-shot learning (FSL) addresses this challenge through techniques such as Siamese networks and prototypical networks. However, it also suffers from the issue of overfitting, which leads to catastrophic forgetting and performance degradation. Current underwater FSL methods primarily focus on mining similar information within sample pairs, ignoring the unique features of ship radiation noise. This study proposes a novel cross-domain contrastive learning-based few-shot (CDCF) method for UATR to alleviate overfitting issues. This approach leverages self-supervised training on both source and target domains to facilitate rapid adaptation to the target domain. Additionally, a base contrastive module is introduced. Positive and negative sample pairs are generated through data augmentation, and the similarity in the corresponding frequency bands of feature embedding is utilized to learn fine-grained features of ship radiation noise, thereby expanding the scope of knowledge in the source domain. We evaluate the performance of CDCF in diverse scenarios on ShipsEar and DeepShip datasets. The experimental results indicate that in cross-domain environments, the model achieves accuracy rates of 56.71%, 73.02%, and 76.93% for 1-shot, 3-shot, and 5-shot scenarios, respectively, outperforming other FSL methods. Moreover, the model demonstrates outstanding performance in noisy environments.

Funder

National Science Foundation for Young Scientists of China

Natural Science Basic Research Program of Shaanxi

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3