Feature Extraction of Underwater Target Signal Using Mel Frequency Cepstrum Coefficients Based on Acoustic Vector Sensor

Author:

Zhang Lanyue12,Wu Di12,Han Xue12,Zhu Zhongrui12ORCID

Affiliation:

1. Science and Technology on Underwater Acoustic Laboratory, Harbin Engineering University, Harbin 150001, China

2. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

Feature extraction method using Mel frequency cepstrum coefficients (MFCC) based on acoustic vector sensor is researched in the paper. Signals of pressure are simulated as well as particle velocity of underwater target, and the features of underwater target using MFCC are extracted to verify the feasibility of the method. The experiment of feature extraction of two kinds of underwater targets is carried out, and these underwater targets are classified and recognized by Backpropagation (BP) neural network using fusion of multi-information. Results of the research show that MFCC, first-order differential MFCC, and second-order differential MFCC features could be used as effective features to recognize those underwater targets and the recognition rate, which using the particle velocity signal is higher than that using the pressure signal, could be improved by using fusion features.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Reference10 articles.

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3