Author:
Odintsov Sergey,Miller Eugene,Kamardin Andrey,Nevzorova Irina,Troitsky Arkady,Schröder Mathias
Abstract
The height of the mixing layer is a significant parameter for describing the dynamics of the planetary boundary layer (PBL), especially for air quality control and for the parametrizations in numerical modeling. The problem is that the heights of the mixing layer cannot be measured directly. The values of this parameter are depending both on the applied algorithms for calculation and on the measuring instruments which have been used by the data source. To determine the height of a layer of intense turbulent heat exchange, data were used from acoustic meteorological locator (sodar) and from a passive single-channel scanning microwave radiometer MTP-5 (MWR) to measure the temperature profile in a layer of up to 1 km. Sodar can provide information on the structure of temperature turbulence in the PBL directly. These data have been compared with the mixing layer height calculated with the Parcel method by using the MTP-5 data. For the analysis, July and September 2020 were selected in the city of Tomsk in Siberia as characteristic periods of mid-summer and the transition period to autumn. The measurement results, calculations and inter-comparisons are shown and discussed in this work. During temperature inversions in the boundary layer, it was observed that turbulent heat transfer (increased dispersion of air temperature) is covering the inversion layers and the overlying ones. Moreover, this phenomenon is not only occurring during the morning destruction of inversions, but also in the process of their formation and development.
Subject
General Environmental Science,Renewable Energy, Sustainability and the Environment,Ecology, Evolution, Behavior and Systematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献