Role of a 193 nm ArF Excimer Laser in Laser-Assisted Plasma-Enhanced Chemical Vapor Deposition of SiNx for Low Temperature Thin Film Encapsulation

Author:

An KunsikORCID,Lee Ho-Nyun,Cho Kwan HyunORCID,Lee Seung-Woo,Hwang David J.ORCID,Kang Kyung-TaeORCID

Abstract

In this study, silicon nitride thin films are deposited on organic polyethylene-naphthalate (PEN) substrates by laser assisted plasma enhanced chemical vapor deposition (LAPECVD) at a low temperature (150 °C) for the purpose of evaluating the encapsulation performance. A plasma generator is placed above the sample stage as conventional plasma enhanced chemical vapor deposition (PECVD) configuration, and the excimer laser beam of 193 nm wavelength illuminated in parallel to the sample surface is coupled to the reaction zone between the sample and plasma source. Major roles of the laser illumination in LAPECVD process are to compete with or complement the plasma decomposition of reactant gases. While a laser mainly decomposes ammonia molecules in the plasma, it also contributes to the photolysis of silane in the plasma state, possibly through the resulting hydrogen radicals and the excitation of intermediate disilane products. It will also be shown that the LAPECVD with coupled laser illumination of 193 nm wavelength improves the deposition rate of silicon nitride thin film, and the encapsulation performance evaluated via the measurement of water vapor transmission rate (WVTR).

Funder

National Research Council of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3