Remaining Useful Life Prediction of Rolling Bearings Based on Multi-Scale Attention Residual Network

Author:

Song Lin12ORCID,Wu Jun3,Wang Liping3,Chen Guo1,Shi Yile4,Liu Zhigui1

Affiliation:

1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China

2. School of Intelligent Manufacturing, Panzhihua University, Panzhihua 617000, China

3. State Key Laboratory of Tribology, Institute of Manufacturing Engineering, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China

4. Strategic Technology and Equipment Development Center, China Academy of Engineering Physics, Mianyang 621010, China

Abstract

The remaining useful life (RUL) prediction of rolling bearings based on vibration signals has attracted widespread attention. It is not satisfactory to adopt information theory (such as information entropy) to realize RUL prediction for complex vibration signals. Recent research has used more deep learning methods based on the automatic extraction of feature information to replace traditional methods (such as information theory or signal processing) to obtain higher prediction accuracy. Convolutional neural networks (CNNs) based on multi-scale information extraction have demonstrated promising effectiveness. However, the existing multi-scale methods significantly increase the number of model parameters and lack efficient learning mechanisms to distinguish the importance of different scale information. To deal with the issue, the authors of this paper developed a novel feature reuse multi-scale attention residual network (FRMARNet) for the RUL prediction of rolling bearings. Firstly, a cross-channel maximum pooling layer was designed to automatically select the more important information. Secondly, a lightweight feature reuse multi-scale attention unit was developed to extract the multi-scale degradation information in the vibration signals and recalibrate the multi-scale information. Then, end-to-end mapping between the vibration signal and the RUL was established. Finally, extensive experiments were used to demonstrate that the proposed FRMARNet model can improve prediction accuracy while reducing the number of model parameters, and it outperformed other state-of-the-art methods.

Funder

National Key R&D Program of China

Panzhihua University Cultivation Program

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3