Integrating Physics and Data Driven Cyber-Physical System for Condition Monitoring of Critical Transmission Components in Smart Production Line

Author:

Song LinORCID,Wang Liping,Wu Jun,Liang Jianhong,Liu Zhigui

Abstract

In response to the lack of a unified cyber–physical system framework, which combined the Internet of Things, industrial big data, and deep learning algorithms for the condition monitoring of critical transmission components in a smart production line. In this study, based on the conceptualization of the layers, a novel five-layer cyber–physical systems framework for smart production lines is proposed. This architecture integrates physics and is data-driven. The smart connection layer collects and transmits data, the physical equation modeling layer converts low-value raw data into high-value feature information via signal processing, the machine learning modeling layer realizes condition prediction through a deep learning algorithm, and scientific decision-making and predictive maintenance are completed through a cognition layer and a configuration layer. Case studies on three critical transmission components—spindles, bearings, and gears—are carried out to validate the effectiveness of the proposed framework and hybrid model for condition monitoring. The prediction results of the three datasets show that the system is successful in distinguishing condition, while the short time Fourier transform signal processing and deep residual network deep learning algorithm is superior to that of other models. The proposed framework and approach are scalable and generalizable and lay the foundation for the extension of the model.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3