Robot Grasp Planning: A Learning from Demonstration-Based Approach

Author:

Wang Kaimeng1ORCID,Fan Yongxiang1,Sakuma Ichiro2

Affiliation:

1. FANUC Advanced Research Laboratory, FANUC America Corporation, Union City, CA 94587, USA

2. Department of Precision Engineering, The University of Tokyo, Tokyo 113-8654, Japan

Abstract

Robot grasping constitutes an essential capability in fulfilling the complexities of advanced industrial operations. This field has been extensively investigated to address a range of practical applications. However, the generation of a stable grasp remains challenging, principally due to the constraints imposed by object geometries and the diverse objectives of the tasks. In this work, we propose a novel learning from demonstration-based grasp-planning framework. This framework is designed to extract crucial human grasp skills, namely the contact region and approach direction, from a single demonstration. Then, it formulates an optimization problem that integrates the extracted skills to generate a stable grasp. Distinct from conventional methods that rely on learning implicit synergies through human demonstration or on mapping the dissimilar kinematics between human hands and robot grippers, our approach focuses on learning the intuitive human intent that involves the potential contact regions and the grasping approach direction. Furthermore, our optimization formulation is capable of identifying the optimal grasp by minimizing the surface fitting error between the demonstrated contact regions on the object and the gripper finger surface and imposing a penalty for any misalignment between the demonstrated and the gripper’s approach directions. A series of experiments is conducted to verify the effectiveness of the proposed algorithm through both simulations and real-world scenarios.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3