Assessment of the Temperature Effects in SMAP Satellite Soil Moisture Products in Oklahoma

Author:

Hoang Kim OanhORCID,Lu Minjiao

Abstract

Soil moisture is a notably important component in various studies in water sciences, including hydrology, agriculture, and water management. To achieve extensive or global spatial coverage, satellites focusing on soil moisture observation have been launched, and many satellite products, such as SMAP and SMOS soil moisture products, have been provided. Most of these satellite observations are based on the dielectric properties of wet soil, and most soil moisture retrieval algorithms are calibrated or evaluated using in situ soil moisture. While the in situ data observed by dielectric sensors, which are the most widely used, are reported to include errors caused by the so-called “temperature effects” of these sensors, the temperature dependency of bulk soil dielectric constant has rarely been discussed on satellite data. Since both in situ dielectric measurements and satellite observations are based on the same physical variable, the dielectric constant and the dielectrically measured in situ soil moisture data are also used as ground truth, it is necessary to assess the impact of temperature effects on satellite products. In this work, we attempted to identify the existence of the temperature effects and evaluate the consequences of removing these effects on in situ and satellite soil moisture and the relationships between the brightness temperature at the soil surface and the brightness temperature provided by satellite observation. To achieve the goals of this study, we analyzed the temperature effects on surface soil moisture data provided by a SMAP mission in Oklahoma, the United States. The results show that temperature effects exist in SMAP soil moisture products in Oklahoma, and the removal of these effects will potentially improve the accuracy of these products.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3