Height Prediction and 3D Visualization of Mining-Induced Water-Conducting Fracture Zone in Western Ordos Basin Based on a Multi-Factor Regression Analysis

Author:

Yin Huiyong,Dong Fangying,Zhang Yiwen,Cheng Wenju,Zhai Peihe,Ren Xuyan,Liu Ziang,Zhai Yutao,Li Xin

Abstract

The mining-induced water-conducting fracture zone (WCFZ) plays a critical role in roof water damage prevention and ecological protection. The measured heights of the WCFZ were collected from 52 working faces or boreholes in the Ordos Basin mining area. Four factors influencing the mining-induced height of the WCFZ, i.e., mining thickness, proportion coefficient of hard rock, working width, and mining depth, were analyzed. The optimal unitary function model of each factor and the height of the WCFZ were obtained through single-factor analysis. The grey correlation method and fuzzy ordered binary comparison method were used to determine the comprehensive weight, and the weighted improved multiple regression model was obtained by combination and iteration. The relative error of the model was basically controlled within 10%. Finally, taking the Qingshuiying Coalfield as an application case, we predicted the mining-induced height of the WCFZ by using the new prediction model. The spatial distribution characteristics of the WCFZ were analyzed by the geographic information system. In addition, Groundwater Modeling System (GMS) software was used to build a 3D structure model of WCFZ height to visualize the spatial distribution rules of the WCFZ. The results showed that the height of the WCFZ can be predicted quantitatively by this new method, and the visualization of the WCFZ can be realized. The proposed method effectively analyzes and predicts the mining-induced height of the WCFZ so that water gushing risks from overlying aquifers can be prevented or mitigated in mines.

Funder

the National Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference39 articles.

1. Experimental study of the remediation of acid mine drainage by Maifan stones combined with SRB

2. Sedimentary characteristics and sequence framework of intracontinental foreland Basin in the western China;Gu;Acta Sedimentol. Sin.,2005

3. Mine Water Problems and Solutions in China

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3