Experimental study of the remediation of acid mine drainage by Maifan stones combined with SRB

Author:

Guo XuyingORCID,Hu Zhiyong,Fu Saiou,Dong Yanrong,Jiang Guoliang,Li Ying

Abstract

The problems of acid mine drainage (AMD) in coal mine acidic wastewaters arise from a range of sources, including severe pollution with heavy metals and SO42- and difficulties during treatment. Based on the ability of Maifan stone to adsorb heavy metals and the dissimilatory reduction of SO42- by sulfate-reducing bacteria (SRB), Maifan stone-sulfate-reducing bacterium-immobilized particles were prepared via immobilization techniques using Shandong Maifan stone as the experimental material. The effects of Maifan stones containing SRB on mitigating AMD were investigated by constructing Dynamic Column 1 with Maifan stone-sulfate-reducing bacterium-immobilized particles and by constructing Dynamic Column 2 with SRB mixed with Maifan stones. By the use of adsorption isotherms, adsorption kinetics, a reduction kinetics model and X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies, the mechanism by which Maifan stone-sulfate-reducing bacterium-immobilized particles mitigate AMD was revealed. The results showed that the total effect of Maifan stone-sulfate-reducing bacterium-immobilized particles on AMD was better than that of biological Maifan stone carriers. The highest rates for the removal of Fe2+, Mn2+, and SO42- in AMD were 90.51%, 85.75% and 93.61%, respectively, and the pH value of the wastewater increased from 4.08 to 7.64. The isotherms for the adsorption of Fe2+ and Mn2+ on Maifan stone-sulfate-reducing bacterium-immobilized particles conformed to the output of the Langmuir model. The adsorption kinetics were in accordance with Lagergren first-order kinetics, and the kinetics for the reduction of SO42- conformed to those of a first-order reaction model.

Funder

National Natural Science Foundation of China

Department of Education of Liaoning Province

Discipline innovation team of Liaoning Technical University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference46 articles.

1. Acid mine drainage from the Panasqueira mine and its influence on Zêzere river (Central Portugal)[J].;C. Candeias;Journal of African Earth Sciences,2014

2. Acid Mine Drainage (AMD): causes, treatment and case studies[J].;A. Akcil;Journal of Cleaner Production,2006

3. Acid mine drainage in an Indian high-sulfur coal mining area: Cytotoxicity assay and remediation study [J];M. Dutta;Journal of Hazardous Materials,2020

4. Recovery of calcium carbonate from steelmaking slag and utilization for acid mine drainage pre-treatment [J];J. Mulopo;Water Science & Technology A Journal of the International Association on Water Pollution Research,2012

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3