Height Prediction of Water-Conducting Fracture Zone in Jurassic Coalfield of Ordos Basin Based on Improved Radial Movement Optimization Algorithm Back-Propagation Neural Network

Author:

Gao Zhiyong1,Jin Liangxing1ORCID,Liu Pingting1ORCID,Wei Junjie1

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

Abstract

The development height of the water-conducting fracture zone (WCFZ) is crucial for the safe production of coal mines. The back-propagation neural network (BP-NN) can be utilized to forecast the WCFZ height, aiding coal mines in water hazard prevention and control efforts. However, the stochastic generation of initial weights and thresholds in BP-NN usually leads to local optima, which might reduce the prediction accuracy. This study thus invokes the excellent global optimization capability of the Improved Radial Movement Optimization (IRMO) algorithm to optimize BP-NN. The influences of mining thickness, coal seam depth, working width, and hard rock lithology proportion coefficient on the height of WCFZ are investigated through 75 groups of in situ data of WCFZ heights measured in the Jurassic coalfield of the Ordos Basin. Consequently, an IRMO-BP-NN model for predicting WCFZ height in the Jurassic coalfield of the Ordos Basin was constructed. The proposed IRMO-BP-NN model was validated through monitoring data from the 4−2216 working faces of Jianbei Coal Mine, followed by a comparative analysis with empirical formulas and conventional BP-NN models. The relative error of the IRMO-BP-NN prediction model is 4.93%, outperforming both the BP-NN prediction model, the SVR prediction model, and empirical formulas. The results demonstrate that the IRMO-BP-NN model enhances the accuracy of predicting WCFZ height, providing an application foundation for predicting such heights in the Jurassic coalfield of the Ordos Basin and protecting the ecological environment of Ordos Basin mining areas.

Publisher

MDPI AG

Reference37 articles.

1. Wang, S. (1996). Coal Accumulation and Coal Resource Evaluation of Ordos Basin, China Coal Industry Publishing House.

2. Progress, Problems and Prospects of Prevention and Control Technology of Mine Water and Reutilization in China;Wu;J. China Coal Soc.,2014

3. Prevention and Control Technology and Application of Roof Water Disaster in Jurassic Coal Field of Ordos Basin;Dong;J. China Coal Soc.,2020

4. Mud Cover Effect of Mining-Induced Failure of Soft Overburden in Thick Clay Strata;Fan;J. Min. Saf. Eng.,2020

5. Study on Distribution Law of Three Overburden Zones in Shallow and Thick Coal Seam Mining of Daliuta Coal Mine;He;Coal Sci. Technol.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3