Mapping Local Climate Zones in the Urban Environment: The Optimal Combination of Data Source and Classifier

Author:

Cui SiyingORCID,Wang Xuhong,Yang Xia,Hu Lifa,Jiang Ziqi,Feng ZihaoORCID

Abstract

The novel concept of local climate zones (LCZs) provides a consistent classification framework for studies of the urban thermal environment. However, the development of urban climate science is severely hampered by the lack of high-resolution data to map LCZs. Using Gaofen-6 and Sentinel-1/2 as data sources, this study designed four schemes using convolutional neural network (CNN) and random forest (RF) classifiers, respectively, to demonstrate the potential of high-resolution images in LCZ mapping and evaluate the optimal combination of different data sources and classifiers. The results showed that the combination of GF-6 and CNN (S3) was considered the best LCZ classification scheme for urban areas, with OA and kappa coefficients of 85.9% and 0.842, respectively. The accuracy of urban building categories is above 80%, and the F1 score for each category is the highest, except for LCZ1 and LCZ5, where there is a small amount of confusion. The Sentinel-1/2-based RF classifier (S2) was second only to S3 and superior to the combination of GF-6 and random forest (S1), with OA and kappa coefficients of 64.4% and 0.612, respectively. The Sentinel-1/2 and CNN (S4) combination has the worst classification result, with an OA of only 39.9%. The LCZ classification map based on S3 shows that the urban building categories in Xi’an are mainly distributed within the second ring, while heavy industrial buildings have started to appear in the third ring. The urban periphery is mainly vegetated and bare land. In conclusion, CNN has the best application effect in the LCZ mapping task of high-resolution remote sensing images. In contrast, the random forest algorithm has better robustness in the band-abundant Sentinel data.

Funder

National Nature Science Foundation of China

Natural Science Foundation of Shaanxi Province, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3