Abstract
A fast and effective determination method of different species of vegetable seeds oil is vital in the plant oil industry. The near-infrared reflectance spectroscopy (NIRS) method was developed in this study to analyze the oil and moisture contents of Camellia gauchowensis Chang and C. semiserrata Chi seeds kernels. Calibration and validation models were established using principal component analysis (PCA) and partial least squares (PLS) regression methods. In the prediction models of NIRS, the levels of accuracy obtained were sufficient for C. gauchowensis Chang and C. semiserrata Chi, the correlation coefficients of which for oil were 0.98 and 0.95, respectively, and those for moisture were 0.92 and 0.89, respectively. The near infrared spectrum of crush seeds kernels was more precise compared to intact kernels. Based on the calibration models of the two Camellia species, the NIRS predictive oil contents of C. gauchowensis Chang and C. semiserrata Chi seeds kernels were 48.71 ± 8.94% and 58.37 ± 7.39%, and the NIRS predictive moisture contents were 4.39 ± 1.08% and 3.49 ± 0.71%, respectively. The NIRS technique could determine successfully the oil and moisture contents of C. gauchowensis Chang and C. semiserrata Chi seeds kernels.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献