An Efficient Continuous Flow Synthesis for the Preparation of N-Arylhydroxylamines: Via a DMAP-Mediated Hydrogenation Process

Author:

Chen Jianli12ORCID,Lin Xinyu2,Xu Feng3,Chai Kejie2,Ren Minna2,Yu Zhiqun2,Su Weike2ORCID,Liu Fengfan2ORCID

Affiliation:

1. College of New Materials Engineering, Jiaxing Nanhu University, Jiaxing 314000, China

2. National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China

3. Raybow (Hangzhou) Pharmaceutical Co., Ltd., Hangzhou 310014, China

Abstract

The selective hydrogenation of nitroarenes to N-arylhydroxylamines is an important synthetic process in the chemical industry. It is commonly accomplished by using heterogeneous catalytic systems that contain inhibitors, such as DMSO. Herein, DMAP has been identified as a unique additive for increasing hydrogenation activity and product selectivity (up to >99%) under mild conditions in the Pt/C-catalyzed process. Continuous-flow technology has been explored as an efficient approach toward achieving the selective hydrogenation of nitroarenes to N-arylhydroxylamines. The present flow protocol was applied for a vast substrate scope and was found to be compatible with a wide range of functional groups, such as electron-donating groups, carbonyl, and various halogens. Further studies were attempted to show that the improvement in the catalytic activity and selectivity benefited from the dual functions of DMAP; namely, the heterolytic H2 cleavage and competitive adsorption.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Key R&D Project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3