Affiliation:
1. College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, People's Republic of China
2. Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education and Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, People's Republic of China
Abstract
p-Aminophenol (AP) is the key intermediate of the traditional synthesis of paracetamol. The method of obtaining AP included a selective reduction reaction of the generation of N-arylhydroxylamine (AHA) using nitrobenzene (NB) as the raw material, followed by a Bamberger rearrangement reaction to transfer AHA to the target product. The generation of AHA is a key step, but due to its structural instability and the incompatibility of the two reaction systems, one-pot synthesis of paracetamol faces great challenges. Considering that using flow reactors in series may avoid the problems faced by batch reactors, the article presents the strategy to obtain paracetamol via a continuous flow technology. In particular, we focus on condition screening in total synthesis experiments, including hydrogenation, Bamberger rearrangement, and amidation in flow. The continuous three-step synthesis process used NB as a raw material to generate AHA, which entered the downstream for timely conversion, achieving in situ on-demand preparation of the unstable intermediate AHA, avoiding cumbersome processing and storage processes. Moreover, each step of the reaction system exhibits excellent compatibility, and the work-up is simple.
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献