Research of CO2-Soluble Surfactants for Enhanced Oil Recovery: Review and Outlook

Author:

Liang Shisheng12ORCID,Luo Wenli23,Luo Zhixing4,Wang Wenjuan3,Xue Xiaohu5,Dong Bo12

Affiliation:

1. School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

2. Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China

3. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China

4. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, China

5. China Petroleum Technology and Development Corporation, Beijing 100028, China

Abstract

CO2 foam injection has been shown to be effective under reservoir conditions for enhanced oil recovery. However, its application requires a certain stability and surfactant absorbability on rock surface, and it is also associated with borehole corrosion in the presence of water. Adding surfactants to CO2 can enhance the interaction between CO2 and crude oil and control the CO2 mobility, thereby improving the performance of CO2 flooding. This paper presents a review of the research of CO2-soluble surfactants and their applications. Molecular dynamics simulation is introduced as a tool for analyzing the behavior of the surfactants in supercritical CO2 (scCO2). The applications of CO2-soluble surfactants, including CO2 thickening, reducing miscibility pressure, and generating supercritical CO2 foam, are discussed in detail. Moreover, some opportunities for the research and development of CO2-soluble surfactants are proposed.

Funder

CNPC’s major scientific and technological project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3