A Critical Review of CO2 Capture Technologies and Prospects for Clean Power Generation

Author:

Sifat Najmus S.,Haseli Yousef

Abstract

With rapid growth in global demand for energy, the emission of CO2 is increasing due to the use of fossil fuels in power plants. Effective strategies are required to decrease the industrial emissions to meet the climate change target set at 21st Conference of the Parties (COP 21). Carbon capture and storage have been recognized as the most useful methods to reduce the CO2 emissions while using fossil fuels in power generation. This work reviews different methods and updates of the current technologies to capture and separate CO2 generated in a thermal power plant. Carbon capture is classified in two broad categories depending on the requirement of separation of CO2 from the gases. The novel methods of oxy combustion and chemical looping combustion carbon capture have been compared with the traditional post combustion and precombustion carbon capture methods. The current state of technology and limitation of each of the processes including commonly used separation techniques for CO2 from the gas mixture are discussed in this review. Further research and investigations are suggested based on the technological maturity, economic viability, and lack of proper knowledge of the combustion system for further improvement of the capture system.

Funder

Central Michigan University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solid adsorbent material: A review on trends of post-combustion CO2 capture;Process Safety and Environmental Protection;2024-02

2. Development of Mg-Modified Fe-Based Catalysts for Low-Concentration CO2 Hydrogenation to Olefins;ACS Sustainable Chemistry & Engineering;2024-01-24

3. Life Cycle Assessment of Carbon Capture by an Intelligent Vertical Plant Factory within an Industrial Park;Sustainability;2024-01-12

4. Ionic Liquids for Atmospheric CO 2 Capture: A Techno‐Economic Assessment;Handbook of Ionic Liquids;2023-12-29

5. Development and evaluation of a hollow fiber membrane contactor for carbon dioxide capture;International Conference on Mathematical and Statistical Physics, Computational Science, Education and Communication (ICMSCE 2023);2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3