Author:
Li Yi-Cheng,Cao Kun,Lan Yu-Xiao,Zhang Jing-Ming,Gong Miao,Wen Yan-Wei,Shan Bin,Chen Rong
Abstract
Manganese oxide (MnOx) shows great potential in the areas of nano-electronics, magnetic devices and so on. Since the characteristics of precise thickness control at the atomic level and self-align lateral patterning, area-selective deposition (ASD) of the MnOx films can be used in some key steps of nanomanufacturing. In this work, MnOx films are deposited on Pt, Cu and SiO2 substrates using Mn(EtCp)2 and H2O over a temperature range of 80–215 °C. Inherently area-selective atomic layer deposition (ALD) of MnOx is successfully achieved on metal/SiO2 patterns. The selectivity improves with increasing deposition temperature within the ALD window. Moreover, it is demonstrated that with the decrease of electronegativity differences between M (M = Si, Cu and Pt) and O, the chemisorption energy barrier decreases, which affects the initial nucleation rate. The inherent ASD aroused by the electronegativity differences shows a possible method for further development and prediction of ASD processes.
Funder
National Natural Science Foundation of China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献