Resveratrol: A Fair Race Towards Replacing Sulfites in Wines

Author:

Kontaxakis EmmanouilORCID,Trantas EmmanouilORCID,Ververidis FilipposORCID

Abstract

In recent years, significant efforts to produce healthier wines has led to the replacement or reduction of the addition of sulfites, using alternative substances or techniques. Resveratrol and related biophenols seem to be of great interest, since beyond their protective nature and contrary to sulfites they can positively affect consumer health. These bioactive phytochemicals are naturally produced in grapes as evolutionary acquired mechanisms against pathogens and UV irradiation. However, despite the efforts made so far attempting to develop economic and industrially adopted isolation techniques, available quantities of these biophenols for commercial use are still quite limited. Therefore, such molecules are still not able to meet the needs of industrial use due to their prohibitive marketable cost. In this review we summarize the efforts that have been made to biosynthesize these molecules through alternative, innovative ways. Increasing interest in modern biotechnological approaches has shed light on the exploitation of metabolically engineered microbial factories, instead of plants, to produce molecules of industrial interest. Such approaches, also reviewed here, are expected to lower the cost and appear promising to produce enough surplus to attract further oenological experimentation upon yielding functional wines. This development is expected to attract further industrial attention, continuing the race to partially or totally replace the external addition of sulfites. We also review important physicochemical properties of resveratrol in relation to enriching wines.

Funder

General Secretariat for Research and Technology

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3