Performance Optimization of a Developed Near-Infrared Spectrometer Using Calibration Transfer with a Variety of Transfer Samples for Geographical Origin Identification of Coffee Beans

Author:

Phuangsaijai Nutthatida,Theanjumpol Parichat,Kittiwachana SilaORCID

Abstract

This research aimed to improve the classification performance of a developed near-infrared (NIR) spectrometer when applied to the geographical origin identification of coffee bean samples. The modification was based on the utilization of a collection of spectral databases from several different agricultural samples, including corn, red beans, mung beans, black beans, soybeans, green and roasted coffee, adzuki beans, and paddy and white rice. These databases were established using a reference NIR instrument and the piecewise direct standardization (PDS) calibration transfer method. To evaluate the suitability of the transfer samples, the Davies–Bouldin index (DBI) was calculated. The outcomes that resulted in low DBI values were likely to produce better classification rates. The classification of coffee origins was based on the use of a supervised self-organizing map (SSOM). Without the spectral modification, SSOM classification using the developed NIR instrument resulted in predictive ability (% PA), model stability (% MS), and correctly classified instances (% CC) values of 61%, 58%, and 64%, respectively. After the transformation process was completed with the corn, red bean, mung bean, white rice, and green coffee NIR spectral data, the predictive performance of the SSOM models was found to have improved (67–79% CC). The best classification performance was observed with the use of corn, producing improved % PA, % MS, and % CC values at 71%, 67%, and 79%, respectively.

Funder

National Research Council of Thailand

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3