Photoelectron Properties and Organic Molecules Photodegradation Activity of Titania Nanotubes with CuxO Nanoparticles Heat Treated in Air and Argon

Author:

Konstantinova ElizavetaORCID,Savchuk TimofeyORCID,Pinchuk Olga,Kytina Ekaterina,Ivanova Elizaveta,Volkova LidiyaORCID,Zaitsev VladimirORCID,Pavlikov AlexanderORCID,Elizarova Elena

Abstract

Titania is very famous photocatalyst for decomposition of organic pollutants. Its photocatalytic properties significantly depend on the morphology and chemical composition of the samples. Herein, the TiO2 nanotubes/CuxO nanoheterostructures have been synthesized and the effect of heat treatment performed in molecular atmospheres of air and argon on their photoelectrochemical and photocatalytic properties has been studied. The prepared samples have a higher reaction rate constant compared to TiO2 nanotubes in the decomposition reaction of methylene blue molecules. It is established that in argon treated nanoheterostructures, the copper oxide is present in two phases, CuO and Cu2O, while in air treated ones there is only CuO. In the TiO2 nanotubes/CuxO samples, Cu2+ ions and molecular O2− radicals were detected while in TiO2 nanotubes only carbon dangling bond defects are present. The dynamics of O2− radicals under illumination are discussed. It was shown that the TiO2 nanotubes do not exhibit photocatalytic activity under visible light. The mechanism of the photocatalytic reaction on the surface of the TiO2 nanotubes/CuxO samples was proposed. It is assumed that a photocatalytic decomposition of organic molecules under visible light at the surface of the nanoheterostructures under investigation is realized mainly by the reaction of these molecules with photogenerated O2− radicals. The results obtained are completely original and indicate the high promise of the prepared photocatalysts.

Funder

Russian Science Foundation

RFBR

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3