In Silico Tools to Extract the Drug Design Information Content of Degradation Data: The Case of PROTACs Targeting the Androgen Receptor

Author:

Apprato Giulia1ORCID,D’Agostini Giulia1,Rossetti Paolo1ORCID,Ermondi Giuseppe1ORCID,Caron Giulia1

Affiliation:

1. Molecular Biotechnology and Health Sciences Department, University of Torino, Via Quarello, 15, 10135 Torino, Italy

Abstract

Proteolysis-Targeting Chimeras (PROTACs) have recently emerged as a promising technology in the drug discovery landscape. Large interest in the degradation of the androgen receptor (AR) as a new anti-prostatic cancer strategy has resulted in several papers focusing on PROTACs against AR. This study explores the potential of a few in silico tools to extract drug design information from AR degradation data in the format often reported in the literature. After setting up a dataset of 92 PROTACs with consistent AR degradation values, we employed the Bemis–Murcko method for their classification. The resulting clusters were not informative in terms of structure–degradation relationship. Subsequently, we performed Degradation Cliff analysis and identified some key aspects conferring a positive contribution to activity, as well as some methodological limits when applying this approach to PROTACs. Linker structure degradation relationships were also investigated. Then, we built and characterized ternary complexes to validate previous results. Finally, we implemented machine learning classification models and showed that AR degradation for VHL-based but not CRBN-based PROTACs can be predicted from simple permeability-related 2D molecular descriptors.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3