Author:
Gilbraith William E.,Carter J. Chance,Adams Kristl L.,Booksh Karl S.,Ottaway Joshua M.
Abstract
We present four unique prediction techniques, combined with multiple data pre-processing methods, utilizing a wide range of both oil types and oil peroxide values (PV) as well as incorporating natural aging for peroxide creation. Samples were PV assayed using a standard starch titration method, AOCS Method Cd 8-53, and used as a verified reference method for PV determination. Near-infrared (NIR) spectra were collected from each sample in two unique optical pathlengths (OPLs), 2 and 24 mm, then fused into a third distinct set. All three sets were used in partial least squares (PLS) regression, ridge regression, LASSO regression, and elastic net regression model calculation. While no individual regression model was established as the best, global models for each regression type and pre-processing method show good agreement between all regression types when performed in their optimal scenarios. Furthermore, small spectral window size boxcar averaging shows prediction accuracy improvements for edible oil PVs. Best-performing models for each regression type are: PLS regression, 25 point boxcar window fused OPL spectral information RMSEP = 2.50; ridge regression, 5 point boxcar window, 24 mm OPL, RMSEP = 2.20; LASSO raw spectral information, 24 mm OPL, RMSEP = 1.80; and elastic net, 10 point boxcar window, 24 mm OPL, RMSEP = 1.91. The results show promising advancements in the development of a full global model for PV determination of edible oils.
Funder
National Science Foundation
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献