Flexible Microstructured Capacitive Pressure Sensors Using Laser Engraving and Graphitization from Natural Wood

Author:

Qu Chenkai12,Lu Meilan12,Zhang Ziyan12,Chen Shangbi3,Liu Dewen3,Zhang Dawei12,Wang Jing4,Sheng Bin12ORCID

Affiliation:

1. School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2. Shanghai Key Laboratory of Modern Optical Systems, Engineering Research Center of Optical Instruments and Systems, Shanghai 200093, China

3. Inertial Technology Division, Shanghai Aerospace Control Technology Institute, Shanghai 201109, China

4. Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China

Abstract

In recent years, laser engraving has received widespread attention as a convenient, efficient, and programmable method which has enabled high-quality porous graphene to be obtained from various precursors. Laser engraving is often used to fabricate the dielectric layer with a microstructure for capacitive pressure sensors; however, the usual choice of electrodes remains poorly flexible metal electrodes, which greatly limit the overall flexibility of the sensors. In this work, we propose a flexible capacitive pressure sensor made entirely of thermoplastic polyurethane (TPU) and laser-induced graphene (LIG) derived from wood. The capacitive pressure sensor consisted of a flexible LIG/TPU electrode (LTE), an LIG/TPU electrode with a microhole array, and a dielectric layer of TPU with microcone array molded from a laser-engraved hole array on wood, which provided high sensitivity (0.11 kPa−1), an ultrawide pressure detection range (20 Pa to 1.4 MPa), a fast response (~300 ms), and good stability (>4000 cycles, at 0–35 kPa). We believe that our research makes a significant contribution to the literature, because the easy availability of the materials derived from wood and the overall consistent flexibility meet the requirements of flexible electronic devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3