Extending the Affinity Range of Weak Affinity Chromatography for the Identification of Weak Ligands Targeting Membrane Proteins

Author:

Deloche Adrien1,Vidal François-Xavier1,Jammas Lucile2ORCID,Wagner Renaud2ORCID,Dugas Vincent1ORCID,Demesmay Claire1

Affiliation:

1. Institut des Sciences Analytique, Universite Claude Bernard Lyon 1, ISA UMR 5280, CNRS, 5 Rue de la Doua, 69100 Villeurbanne, France

2. Plateforme IMPReSs, CNRS UMR7242, Biotechnologie et Signalisation Cellulaire, Ecole Supérieure de Biotechnologie de Strasbourg, 67400 Illkirch, France

Abstract

The identification of weak-affinity ligands targeting membrane proteins is of great interest in Fragment-Based Drug Design (FBDD). Recently, miniaturized weak affinity chromatography (WAC) has been proposed as a valuable tool to study interactions between small ligands and wild-type membrane proteins embedded in so-called nanodisc biomimetic membranes immobilized on GMA-co-EDMA monoliths in situ-synthesized in capillary columns (less than one microliter in volume). In this proof-of-concept study, the achievable affinity range was limited to medium affinity (low micromolar range). The present work investigates different strategies to extend the affinity range towards low affinities, either by increasing the density of membrane proteins on the chromatographic support or by reducing non-specific interactions with the monolith. The combination of the use of a new and more hydrophilic monolithic support (poly(DHPMA-co-MBA)) and a multilayer nanodisc grafting process (up to three layers) allows a significant increase in the membrane protein density by a more than three-fold factor (up to 5.4 pmol cm−1). Such an increase in protein density associated with reduced non-specific interactions makes it possible to extend the range of detectable affinity, as demonstrated by the identification and characterization of affinities of very low-affinity ligands (Kd values of several hundred micromolar) for the adenosine receptor AA2AR used as a model protein, which was not possible before. The affinity was confirmed by competition experiments.

Funder

French Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3