Abstract
The rapid and nondestructive determination of active compositions in Chrysanthemum morifolium (Hangbaiju) is of great value for producers and consumers. Hyperspectral imaging as a rapid and nondestructive technique was used to determine total polysaccharides and total flavonoids content in Chrysanthemum morifolium. Hyperspectral images of different sizes of Chrysanthemum morifolium flowers were acquired. Pixel-wise spectra within all samples were preprocessed by wavelet transform (WT) followed by standard normal variate (SNV). Partial least squares (PLS) and least squares-support vector machine (LS-SVM) were used to build prediction models using sample average spectra calculated by preprocessed pixel-wise spectra. The LS-SVM model performed better than the PLS models, with the determination of the coefficient of calibration (R2c) and prediction (R2p) being over 0.90 and the residual predictive deviation (RPD) being over 3 for total polysaccharides and total flavonoids content prediction. Prediction maps of total polysaccharides and total flavonoids content in Chrysanthemum morifolium flowers were successfully obtained by LS-SVM models, which exhibited the best performances. The overall results showed that hyperspectral imaging was a promising technique for the rapid and accurate determination of active ingredients in Chrysanthemum morifolium, indicating the great potential to develop an online system for the quality determination of Chrysanthemum morifolium.
Funder
Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献