Hyperspectral imaging combined with deep learning models for the prediction of geographical origin and fungal contamination in millet

Author:

Nie Saimei,Gao Wenbin,Liu Shasha,Li Mo,Li Tao,Ren Jing,Ren Siyao,Wang Jian

Abstract

Millet is one of the major coarse grain crops in China. Its geographical origin and Fusarium fungal contamination with ergosterol and deoxynivalenol have a direct impact on food quality, so the rapid prediction of the geographical origins and fungal toxin contamination is essential for protecting market fairness and consumer rights. In this study, 600 millet samples were collected from twelve production areas in China, and traditional algorithms such as random forest (RF) and support vector machine (SVM) were selected to compare with the deep learning models for the prediction of millet geographical origin and toxin content. This paper firstly develops a deep learning model (wavelet transformation-attention mechanism long short-term memory, WT-ALSTM) by combining hyperspectral imaging to achieve the best prediction effect, the wavelet transformation algorithm effectively eliminates noise in the spectral data, while the attention mechanism module improves the interpretability of the prediction model by selecting spectral feature bands. The integrated model (WT-ALSTM) based on selected feature bands achieves optimal prediction of millet origin, with its accuracy exceeding 99% on both the training and prediction datasets. Meanwhile, it achieves optimal prediction of ergosterol and deoxynivalenol content, with the coefficient of determination values exceeding 0.95 and residual predictive deviation values reaching 3.58 and 3.38 respectively, demonstrating excellent model performance. The above results suggest that the combination of hyperspectral imaging with a deep learning model has great potential for rapid quality assessment of millet. This study provides new technical references for developing portable and rapid hyperspectral imaging inspection technology for on-site assessment of agricultural product quality in the future.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3