Hyperspectral Imaging Combined with Deep Transfer Learning to Evaluate Flavonoids Content in Ginkgo biloba Leaves

Author:

Lu Jinkai1,Jiang Yanbing1,Jin Biao1ORCID,Sun Chengming2ORCID,Wang Li1ORCID

Affiliation:

1. College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China

2. Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China

Abstract

Ginkgo biloba is a famous economic tree. Ginkgo leaves have been utilized as raw materials for medicines and health products due to their rich active ingredient composition, especially flavonoids. Since the routine measurement of total flavones is time-consuming and destructive, rapid, non-destructive detection of total flavones in ginkgo leaves is of significant importance to producers and consumers. Hyperspectral imaging technology is a rapid and non-destructive technique for determining the total flavonoid content. In this study, we discuss five modeling methods, and three spectral preprocessing methods are discussed. Bayesian Ridge (BR) and multiplicative scatter correction (MCS) were selected as the best model and the best pretreatment method, respectively. The spectral prediction results based on the BR + MCS treatment were very accurate (RTest2 = 0.87; RMSETest = 1.03 mg/g), showing a high correlation with the analytical measurements. In addition, we also found that the more and deeper the leaf cracks, the higher the flavonoid content, which helps to evaluate leaf quality more quickly and easily. In short, hyperspectral imaging is an effective technique for rapid and accurate determination of total flavonoids in ginkgo leaves and has great potential for developing an online quality detection system for ginkgo leaves.

Funder

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3