Characterization of a Natural, Stable, Reversible and Colourful Anthocyanidin Network from Sphagnum Moss Based Mainly on the Yellow Trans-Chalcone and Red Flavylium Cation Forms

Author:

Berland HelgeORCID,Andersen Øyvind M.

Abstract

Anthocyanins with various functions in nature are one of the most important sources of colours in plants. They are based on anthocyanidins or 3-deoxyanthocyanidins having in common a C15-skeleton and are unique in terms of how each anthocyanidin is involved in a network of equilibria between different forms exhibiting their own properties including colour. Sphagnorubin C (1) isolated from the cell wall of peat moss (Sphagnum sp.) was in fairly acidic and neutral dimethyl sulfoxide characterized by nuclear magnetic resonance (NMR) and ultraviolet–visible (UV–vis) absorption techniques. At equilibrium, the network of 1 behaved as a two–component colour system involving the reddish flavylium cationic and the yellow trans–chalcone forms. The additional D- and E-rings connected to the common C15-skeleton extend the π-conjugation within the molecule and provide both bathochromic shifts in the absorption spectra of the various forms as well as a low isomerization barrier between the cis- and trans-chalcone forms. The hemiketal and cis-chalcone forms were thus not observed experimentally by NMR due to their short lives. The stable, reversible network of 1 with good colour contrast between its two components has previously not been reported for other natural anthocyanins and might thus have potential in future photochromic systems. This is the first full structural characterization of any naturally occurring anthocyanin chalcone form.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3